
Package: simITS (via r-universe)
August 27, 2024

Type Package

Title Analysis via Simulation of Interrupted Time Series (ITS) Data

Version 0.1.1

Description Uses simulation to create prediction intervals for
post-policy outcomes in interrupted time series (ITS) designs,
following Miratrix (2020) <arXiv:2002.05746>. This package
provides methods for fitting ITS models with lagged outcomes
and variables to account for temporal dependencies. It then
conducts inference via simulation, simulating a set of
plausible counterfactual post-policy series to compare to the
observed post-policy series. This package also provides methods
to visualize such data, and also to incorporate seasonality
models and smoothing and aggregation/summarization. This work
partially funded by Arnold Ventures in collaboration with MDRC.

License GPL-3

Depends dplyr, R (>= 2.10), rlang

Suggests arm, ggplot2, knitr, plyr, purrr, rmarkdown, stats, testthat
(>= 2.1.0), tidyr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Repository https://lmiratrix.r-universe.dev

RemoteUrl https://github.com/lmiratrix/simits

RemoteRef HEAD

RemoteSha 6a4c3cb91f0357ca6d1ba21c5dc063566088d4b3

Contents
add_lagged_covariates . 2
adjust_data . 3

1

https://arxiv.org/abs/2002.05746

2 add_lagged_covariates

aggregate_data . 4
aggregate_simulation_results . 5
calculate_average_outcome . 6
calculate_group_weights . 7
extrapolate_model . 8
fit_model_default . 9
generate_fake_data . 10
generate_fake_grouped_data . 11
make_envelope_graph . 12
make_fit_season_model . 13
make_many_predictions . 14
make_model_smoother . 15
mecklenberg . 16
meck_subgroup . 17
newjersey . 17
process_outcome_model . 18
simITS . 20
smooth_residuals . 20
smooth_series . 22

Index 24

add_lagged_covariates Augment dataframe with lagged covariates

Description

Take outcome and a list of covariates and add new columns with lagged versions. Assumes rows of
dataframe are in time ascending order. Lagged outcome canonically called ’lag.outcome’. Covari-
ates ’lag.XXX’.

Usage

add_lagged_covariates(dat, outcomename, covariates = NULL)

Arguments

dat The dataframe

outcomename The outcome of interest (string)

covariates The covariates to lag along with the outcome. This can be either of two things.
First, it can be a list of string names. Covariates can also be a function with a
"lags" attribute with the listed covariates (as returned by, e.g., make_fit_season_model)
(which is a list of string names). NULL if no covariates other than outcome
should be lagged.

adjust_data 3

Value

Augmented dataframe with lagged covariates as new columns. Will clobber old columns if the
names (of form "lag.XXXX") conflict.

Examples

data("newjersey")
newjersey = add_lagged_covariates(newjersey, "n.warrant", c("sin.m","cos.m"))
head(newjersey[c("n.warrant", "sin.m", "lag.outcome", "lag.sin.m")])

adjust_data Adjust an outcome time series based on the group weights.

Description

Reweight the components of a series to match target weights for several categories. This is a good
preprocessing step to adjust for time-varying covariates such as changing mix of case types.

Usage

adjust_data(
dat,
outcomename = "Y",
timename = "time",
groupname = "G",
Nname = "N",
pi_star,
is_count = FALSE,
include_aggregate = FALSE,
covariates = NULL

)

Arguments

dat Dataframe of data. Requires an N column of total cases represented in each row.

outcomename Name of column that has the outcome to calculated adjusted values for.

groupname Name of categorical covariate that determines the groups.

Nname Name of column in dat that contains total cases (this is the name of the variable
used to generate the weights in pi_star).

pi_star The target weights. Each time point will have its groups re-weighted to match
these target weights.

is_count Indicator of whether outcome is count data or a continuous measure (this im-
pacts how aggregation is done).

include_aggregate

Include aggregated (unadjusted) totals in the output as well.

covariates Covariates to be passed to aggregation (list of string variable names).

4 aggregate_data

Value

Dataframe of adjusted data.

Examples

data("meck_subgroup")
head(meck_subgroup)
pis = calculate_group_weights("category", Nname="n.cases",

meck_subgroup, t_min=0, t_max= max(meck_subgroup$month))
pis

agg = aggregate_data(meck_subgroup,
outcomename="pbail", groupname="category", Nname="n.cases",
is_count=FALSE,
rich = TRUE, covariates = NULL)

head(agg)

adjdat = adjust_data(meck_subgroup, "pbail", "category", "n.cases", pis, include_aggregate=TRUE)
head(adjdat)

aggregate_data Aggregate grouped data

Description

This will take a dataframe with each row being the outcomes, etc., for a given group for a given
time point and aggregate those groups for each time point.

Usage

aggregate_data(
dat,
outcomename = "Y",
timename = "time",
groupname = "G",
Nname = "N",
is_count = FALSE,
rich = TRUE,
covariates = NULL

)

Arguments

dat Dataframe with one row for each time point and group that we are going to
post stratify on. This dataframe should also have an column with passed name
"Nname" indicating the number of cases that make up each given row. It should
have a column "timename" for the time.

aggregate_simulation_results 5

outcomename String name of the outcome variable in dat.

groupname Name of the column that has the grouping categorical variable

Nname Name of variable holding the counts (weight) in each group.

is_count If TRUE the data are counts, and should be aggregated by sum rather than by
mean.

rich If TRUE, add a bunch of extra columns with proportions of the time point that
are each group and so forth.

covariates group-invariant covariates to preserve in the augmented rich dataframe. These
are not used in this method for any calculations. Pass as list of column names of
dat

Value

Dataframe of aggregated data, one row per time point If rich=TRUE many extra columns with
further information.

Examples

data("meck_subgroup")
head(meck_subgroup)
pis = calculate_group_weights("category", Nname="n.cases",

meck_subgroup, t_min=0, t_max= max(meck_subgroup$month))
pis

agg = aggregate_data(meck_subgroup,
outcomename="pbail", groupname="category", Nname="n.cases",
is_count=FALSE,
rich = TRUE, covariates = NULL)

head(agg)

adjdat = adjust_data(meck_subgroup, "pbail", "category", "n.cases", pis, include_aggregate=TRUE)
head(adjdat)

aggregate_simulation_results

Test a passed test statistic on the simulated data

Description

This method is used to look at summary statistics such as average impact post-policy, and see how
the predictive distribution compares to the observed.

6 calculate_average_outcome

Usage

aggregate_simulation_results(
orig.data,
predictions,
outcomename = "Y",
timename = "time",
summarizer = calculate_average_outcome,
...

)

Arguments

orig.data The raw data (dataframe)

predictions The results from process_outcome_model.

outcomename Outcome to use.

summarizer A function to calculate some summary quantity, Default: calculate_average_outcome

... Extra arguments passed to the summarizer function.

Value

List of length two, with first item being the observed value of the test statistic and the second being
a numeric vector representing the emperical reference distribution.

Examples

predictions = process_outcome_model("pbail", mecklenberg,
t0=0, R = 5,
summarize = FALSE, smooth=FALSE)

sstat = aggregate_simulation_results(orig.data = mecklenberg, outcomename = "pbail",
predictions = predictions, time_points = 1:18)

sstat$t
sstat$t.obs

calculate_average_outcome

Summary function for summarize.simulation.results

Description

Given a set of simulation runs, estimate average impact over range of time points.

Usage

calculate_average_outcome(res, outcomename, timename, time_points = 1:54, ...)

calculate_group_weights 7

Arguments

res Dataframe of a single series (simulated or otherwise)

outcomename Name of outcome in res

time_points Which time points to average over, Default: 1:18

... Other parameters (ignored)

Value

Single number (in this case mean of given time points)

See Also

See aggregate_simulation_results for how this function would be used.

Examples

data(mecklenberg)
calculate_average_outcome(mecklenberg, "pbail", time_points=1:24)
calculate_average_outcome(mecklenberg, "pbail", time_points = 1:18)

calculate_group_weights

Calculate proportion of subgroups across time

Description

Calculate overall proportion of cases in each group that lie within a given interval of time defined
by t_min and t_max.

Usage

calculate_group_weights(groupname, dat, t_min, t_max = Inf, Nname = "N")

Arguments

groupname Name of the column that has the grouping categorical variable

dat Dataframe with one row for each time point and group that we are going to
post stratify on. This dataframe should also have an column with passed name
"Nname" indicating the number of cases that make up each given row. It should
have a column "timename" for the time.

t_min The start time point to aggregate cases over.

t_max The final time point (default is last time point).

Nname Name of variable holding the counts (weight) in each group.

8 extrapolate_model

Value

Dataframe of each group along with overall average group weight in the specified timespan.

Examples

data("meck_subgroup")
head(meck_subgroup)
pis = calculate_group_weights("category", Nname="n.cases",

meck_subgroup, t_min=0, t_max= max(meck_subgroup$month))
pis

agg = aggregate_data(meck_subgroup,
outcomename="pbail", groupname="category", Nname="n.cases",
is_count=FALSE,
rich = TRUE, covariates = NULL)

head(agg)

adjdat = adjust_data(meck_subgroup, "pbail", "category", "n.cases", pis, include_aggregate=TRUE)
head(adjdat)

extrapolate_model Extrapolate pre-policy data to post-policy era

Description

This function takes a fitted model and uses it to make post-policy predictions by simulating data.

Usage

extrapolate_model(
M0,
dat,
outcomename = "Y",
timename = "time",
t0 = 0,
R = 400,
summarize = FALSE,
smooth = FALSE,
smoother = smooth_series,
full_output = FALSE,
fix_parameters = FALSE,
...

)

fit_model_default 9

Arguments

M0 The fit model

dat Dataframe with data being analyzed.

outcomename Outcome of interest (name of column).

timename Name of the time variable (name of column).

t0 Last pre-policy timepoint

R Number of replications

summarize Boolean, TRUE means collapse all simulated trajectories into single aggregate.
FALSE means return all paths.

smooth Boolean. TRUE means fit a smoother to the trajectories and look at distribution
of smoothed trajectories. FALSE means look at raw data treajectories.

smoother Function to do smoothing, if smoothing set to TRUE. Default is smooth_series()

full_output TRUE means smoother returns residuals as well as smoothed series.

fix_parameters Keep the parameters in the model M0 as fixed; do not add parameter uncertainty.

... Extra arguments to be passed to smoother (e.g, bandwidth).

Value

Dataframe with columns corresponding to the simulations. If summarize=TRUE, one row per time
point in original data. If FALSE, all the details of all the runs are returned.

See Also

process_outcome_model for wrapper function for this method that is easier to use.

Examples

data("mecklenberg")
mecklenberg = add_lagged_covariates(mecklenberg, "pbail")
mecklenberg.pre = dplyr::filter(mecklenberg, month <= 0)
M0 = fit_model_default(mecklenberg.pre, "pbail")
res = extrapolate_model(M0, "pbail", mecklenberg, 0, 1,

smooth=TRUE)
tail(res)

fit_model_default Default ITS model

Description

This fits the model ‘outcomename ~ lag.outcome + time‘, with no covariates.

Usage

fit_model_default(dat, outcomename, timename = "time", lagless = FALSE, ...)

10 generate_fake_data

Arguments

dat Dataframe of pre-policy data to fit model to. Needs a "time" column

outcomename Outcome of interest

lagless Boolean, include the lagged outcome, or not?

... Extra arguments passed to the lm() call.

Value

A fit model (a ‘lm‘ object from a ‘lm()‘ call) from fitting a simple regression of outcome onto time
and lagged time.

Examples

mecklenberg = add_lagged_covariates(mecklenberg, "pbail")
meck.pre = filter(mecklenberg, month <= 0)
mod = fit_model_default(meck.pre, "pbail", "month", lagless = TRUE)
summary(mod)
mod = fit_model_default(meck.pre, "pbail", "month", lagless = FALSE)
summary(mod)

generate_fake_data Make fake data for testing purposes.

Description

Defaults have heavy seasonality, and an extra bump in impact kicks in at 12 months post-policy.

Usage

generate_fake_data(
t_min = -40,
t_max = 9,
t0 = 0,
rho = 0.5,
sd.omega = 1,
coef_line = c(20, 0.05),
coef_q = c(1, 0, -1, 0),
coef_temp = 0.1,
coef_sin = c(0, 0),
coef_tx = c(0, 0.25, 5)

)

generate_fake_grouped_data 11

Arguments

t_min Index of first month

t_max Index of last month

t0 Last pre-policy time point

rho Autocorrelation

sd.omega Standard deviation of the true residual

coef_line Intercept and slope of the main trendline (list of 2).

coef_q Coefficients for the four quarters (list of 4).

coef_temp Coefficient for temperature.

coef_sin Coefficents for sin and cos features (list of 2)

coef_tx Coefficient for treatment post-policy (list of 3, initial offset, initial slope, addi-
tional slope past 12 months). Treatment is a piecewise linear function.

Value

A tibble having month , temperature , sin.m , cos.m , Q1, Q2 , Q3, Q4, post , Ystr0 , Ystr , Y

Examples

fdat = generate_fake_data(-100,100, rho = 0.95, coef_q=c(0,0,0,0), coef_temp = 0)
plot(fdat$month, fdat$Y, type="l")
fdat2 = generate_fake_data(-100, 100, rho = 0.0, coef_q=c(0,0,0,0), coef_temp = 0)
plot(fdat$month, fdat2$Y, type="l")

generate_fake_grouped_data

A fake DGP with time varying categorical covariate for illustrating
the code.

Description

This code makes synthetic grouped data that can be used to illustrate benefits of post stratification.

Usage

generate_fake_grouped_data(
t_min,
t0,
t_max,
method = c("complex", "linear", "jersey")

)

12 make_envelope_graph

Arguments

t_min Index of first time point

t0 last pre-policy timepoint

t_max Index of last time point

method Type of post-stratification structure to generate (three designs of ’complex’, ’lin-
ear’ and ’jersey’ were originally concieved of when designing simulation studies
with different types of structure).

Value

Dataframe of fake data, with one row per group per time period.

Examples

fdat = generate_fake_grouped_data(t_min=-5,t_max=10, t0 = 0)
table(fdat$time)
table(fdat$type)

make_envelope_graph Make envelope style graph with associated smoothed trendlines

Description

This method builds a ggplot object with the trendline and prediction envelope. It can be customized
after the fact by adding more ggplot layers via normal ggplot "+" syntax.

Usage

make_envelope_graph(envelope, t0, ylab = "Y", xlab = "month")

Arguments

envelope The result of a ‘process_outcome_model()‘ call, i.e. dataframe with columns of
original data, imputed data and, potentially, smoothed data.

t0 Last pre-policy timepoint. Will draw vertical line here.

ylab Y label of plot

xlab X label of plot

Value

Returns (does not yet display) a ggplot plot object containing the time series along with extrap-
olation and prediction envelope. This plot can be augmented and changed via standard ggplot
commands.

See Also

The ggplot2 package.

make_fit_season_model 13

Examples

data("mecklenberg")
t0 = 0
envelope = process_outcome_model("pbail", mecklenberg,

t0=t0, R = 10,
summarize = TRUE, smooth=FALSE)

make_envelope_graph(envelope, t0=t0, ylab = "Proportion given bail") +
ggplot2::labs(title="Sample ITS plot")

data("mecklenberg")
t0 = 0
envelope = process_outcome_model("pbail", mecklenberg,

t0=t0, R = 10,
summarize = TRUE, smooth=FALSE)

make_envelope_graph(envelope, t0=t0, ylab = "Proportion given bail") +
ggplot2::labs(title="Sample ITS plot")

make_fit_season_model Make a fit_model function that takes a seasonality component

Description

This method returns a function that will fit a model both with and without lagged outcomes.

Usage

make_fit_season_model(formula, no_lag = NULL)

Arguments

formula Formula specifying seasonality. No outcome or time needed.

no_lag Formula specifying additional covariates that should be included, but without
lag (usually used due to colinearity of lagged outcomes, such as with a sin and
cos component).

Details

You hand it a formula object specifying the seasonality, e.g., " ~ Q2 + Q3 + Q4", if you have
quarterly season effects. This method assumes you want models with a linear time component as
well, and will add that and an intercept in automatically.

It gives you a function back, that you can use to analyze data.

Value

Callable function. See make_fit_model.

See Also

make_fit_model for the type of function this method will generate.

14 make_many_predictions

Examples

data("newjersey")
modF = make_fit_season_model(~ temperature, timename = "month")
newjersey = add_lagged_covariates(newjersey, "n.warrant", covariates = c("temperature"))
modF(newjersey, "n.warrant")

make_many_predictions Generate a collection of raw counterfactual trajectories

Description

Given a fit linear model ’fit0’, generate R prediction series starting at t0. This takes model uncer-
tainty into account by pulling from the pseudo-posterior of the model parameters (from Gelman and
Hill arm package).

Usage

make_many_predictions(fit0, dat, R, outcomename, timename, t0)

make_many_predictions_plug(fit0, dat, R, outcomename, timename, t0)

Arguments

fit0 The fit linear model to simulate from.

dat A dataframe with the covariates needed by the model fit0 for both pre and post-
policy time points

R Number of series to generate.

outcomename The name of the column in dat which is our outcome.

t0 Last time point of pre-policy. Will start predicting at t0+1.

Value

A data.frame with the collection of predicted series, one row per time point per replicate (so will
have R*nrow(dat) rows).

Functions

• make_many_predictions_plug(): This version makes multiple predictions using estimated
parameters without additional uncertainty. This takes point estimates from the fit model as
fixed parameters. WARNING: This method will not capture true uncertainty as it is not taking
parameter uncertainty into account.

References

The ‘arm‘ package, see https://cran.r-project.org/package=arm

Also see Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevelhierarchical
models (Vol. 1). New York, NY, USA: Cambridge University Press.

https://cran.r-project.org/package=arm

make_model_smoother 15

Examples

data("mecklenberg")
mecklenberg = add_lagged_covariates(mecklenberg, "pbail")
mecklenberg.pre = dplyr::filter(mecklenberg, month <= 0)
M0 = fit_model_default(mecklenberg.pre, "pbail")
res = make_many_predictions(M0, dat=mecklenberg, outcome="pbail", t0=0, R=2)
tail(res)

make_model_smoother Make a smoother that fits a model and then smooths residuals

Description

This helper function gives back a function that takes the resulting simulation data from a single
iteration of the simulation, and fits ’fit_model’ to it, smoothes the residuals, and puts the predictions
from ’fit_model’ back.

Usage

make_model_smoother(fit_model, covariates)

Arguments

fit_model A function that takes data, fits a linear model, and returns the fit model. This
function needs an option to include (or not) lagged covariates.

covariates A dataframe with all covariates needed in the model fitting defined by fit_model.

Details

This can be used to build smoothers that smooth using models other than the model being used for
extrapolation (e.g., a model without temperature).

Resulting functions have the following parameters: ‘res‘ (the data), ‘t0‘ (start time), ‘outcome-
name‘, ‘post.only‘ flag (for smoothing only post data or not), and ‘smooth_k‘, a tuning parameter
for degree of smoothing.

Value

A smoother function that can be passed to the smoothing routines. This function is of the form
listed above.

Examples

data("newjersey")
modA = make_fit_season_model(~ temperature)
modB = make_fit_season_model(~ sin.m + cos.m)
newjersey = add_lagged_covariates(newjersey, "n.warrant",

covariates = c("sin.m", "cos.m", "temperature"))
smoother = make_model_smoother(fit_model = modA, covariates = newjersey)

16 mecklenberg

class(smoother)

Pass made function to process_outcome_model()
envelope = process_outcome_model("n.warrant", newjersey, t0=-8, R = 1,

summarize = TRUE, smooth=TRUE,
smoother = smoother, smooth_k = 11,
fit.model = modB)

mecklenberg Mecklenberg PSA Reform Data

Description

Monthly aggregate outcomes of various measures of interest from Mecklenberg. See MDRC Re-
port.

Usage

mecklenberg

Format

A data frame with 54 rows and 10 variables:

month integer Month, with 0 being month of policy implementation.

karr integer Total count of arrests.

pbail double Proportion of cases in a given month assigned bail (or outright detention).

pptrel double Proportion of cases assigned to pretrial supervised release.

pror double Proportion of cases released on own recognizance.

pb4c double Proportion of cases assigned to money bail (alternate coding from pbail, above).

avg_days_initial double Average number of days spent detained before release due to bail, case
resolution, etc.

avg_t2d double Average time to case resolution (in days).

pstint7 double Proportion detained longer than 7 days.

pstint30 double Proportion detained longer than 30 days.

meck_subgroup 17

meck_subgroup Mecklenberg data by subgroup of charge type

Description

Mecklenberg data that gives proportion of different charge categories of cases given bail (by month).

Usage

meck_subgroup

Format

A data frame with 144 rows and 5 variables:

month integer Month, with 0 being month of policy implementation.

n.cases integer Number of cases of that subgroup for that month

n.bail interger Total number of cases given bail for that subgroup for that month

pbail double Proportion of new cases in given subgroup in that month assigned bail

category character Category of group (charge type).

newjersey New Jersey PSA Reform aggregate data

Description

Montly aggregate counts of arrests of different types in New Jersey.

Usage

newjersey

Format

A data frame with 106 rows and 11 variables:

month integer Index of month.

sin.m double cos of month number

cos.m double sin of month number

M12 integer Month number

Q1 integer Indicator of 1st quarter.

Q2 integer Indicator of 2nd quarter.

Q3 integer Indicator of 3rd quarter.

18 process_outcome_model

Q4 integer Indicator of 4th quarter.

n.warrant double Number of warrant arrests

n.summons double Number of summons arrests

n double Total number of arrests

temperature double Average temperature in New Jersey that month.

process_outcome_model Generate an ITS extrapolation simulation.

Description

This is the primary function to use to use this approach on a given dataset.

Usage

process_outcome_model(
dat,
outcomename = "Y",
timename = "time",
t0 = 0,
R = 400,
summarize = FALSE,
smooth = FALSE,
smoother = NULL,
fit_model = fit_model_default,
covariates = NULL,
plug_in = FALSE,
...

)

Arguments

dat Dataframe with a column for time. The time column is assumed to be a sequence
of integer values.

outcomename Name of column in dat containing the observed outcomes.

timename Name of column in dat containing the time points.

t0 Last pre-policy timepoint

R Number of simulated pre-policy extrapolations to generate.

summarize Summarise the series? (TRUE/FALSE)

smooth Smooth the series? (TRUE/FALSE)

smoother Function to smooth residuals, if smoothing set to TRUE. If NULL, will dynam-
ically make a model smoother based on the fit_model method if covariates are
passed. Otherwise it will use the simple smoother on the outcomes.

process_outcome_model 19

fit_model The function used to fit the model to simulate from. (This model could be a
seasonality model. Default is simple linear model with no covariates.)

covariates Vector of covariate names of all covariates used in the passed model function
fit_model. If null, will attempt to get list of covariates form the "lags" attribute
of the passed ’fit_model’.

plug_in Use the estimated parameters as fixed and do not include extra uncertainty of
parameter estimation in the simulation. (Not recommended as it destroys infer-
ence.)

... Extra arguments to be passed to ‘extrapolate_model()‘

Details

Take a given outcome variable, fit an ITS model, use it to extrapolate R plusible trajectories, and
then using these trajectories, generate final impact results by averaging (if summarize is set to
TRUE).

This function is basically a wrapper for ‘extrapolate_model()‘ with some extra calls to ‘make_model_smoother()‘
to prepare, in the case of smoothing, and adding on a summary trend via ‘generate_Ybars()‘ in the
case of summarizing.

Value

If summarize=TRUE, A dataframe with several columns of interest and one row per time point
of data. The columns are Ymin and Ymax, the limits of the envelope, ’range’, the range of the
envelope, ’SE’, the standard deviation of the trajectories at that time point, ‘Ysmooth‘ the median
smoothed value at that time point (if smoothing), ‘Ystar‘ the median unsmoothed value at that time
point (regardless of smooth flag), ‘Y‘, the observed outcome, ‘Ysmooth1‘, the smoothed observed
outcomes, and ‘Ybar‘ the predicted outcome given the model with no autoregressive aspect.

If summarize=FALSE, a dataframe of all the raw series generated.

See Also

The core internal function that this method is a wrapper for is extrapolate_model.

Examples

data("mecklenberg")
t0 = 0
envelope = process_outcome_model("pbail", mecklenberg,

t0=t0, R = 10,
summarize = TRUE, smooth=FALSE)

make_envelope_graph(envelope, t0=t0, ylab = "Proportion given bail") +
ggplot2::labs(title="Sample ITS plot")

20 smooth_residuals

simITS simITS package overview

Description

Analysis via Simulation of Interrupted Time Series

Details

This package is based on the backbone analytic code for the analyses in, e.g., Redcross et al. (2019)
or Golub et al. (2019). See companion paper Miratrix (2020) for technical discussion of the overall
approach.

Broadly, this package provides methods for fitting Interrupted Time Series models with lagged
outcomes and variables to account for temporal dependencies. It then conducts inference via sim-
ulation, simulating a set of plausible counterfactual post-policy series to compare to the observed
post-policy series. This package provides methods to visualize such data, and also to incorporate
seasonality models and smoothing and aggregation/summarization. See the vignette for a guide of
how to conduct such analyses.

References

Redcross, C., Henderson, B., Valentine, E. & Miratrix, L. (2019). Evaluation of pretrial justice sys-
tem reforms that use the public safety assessment: Effects in Mecklenburg County, North Carolina.
Technical report, MDRC (link)

Golub, C. A., Redcross, C., Valentine, E., & Miratrix, L. (2019). Evaluation of pretrial justice
system reforms that use the public safety assessment: Effects of New Jersey’s criminal justice
reform. Technical report, MDRC. (link)

Miratrix, L. (2020). Using Simulation to Analyze Interrupted Time Series Designs (link)

smooth_residuals Smooth residuals after model fit

Description

Smooth a series by fitting the model to the data, smoothing the residuals, and then putting the model
predictions back.

Usage

smooth_residuals(
res,
t0 = 0,
outcomename = "Y",
timename = "time",

https://www.mdrc.org/publication/evaluation-pretrial-justice-system-reforms-use-public-safety-assessment
https://www.mdrc.org/publication/evaluation-pretrial-justice-system-reforms-use-public-safety-assessment-0
https://arxiv.org/abs/2002.05746

smooth_residuals 21

post.only = TRUE,
smooth_k = SMOOTH_K,
fit_model = fit_model_default,
covariates = res,
full_output = FALSE

)

Arguments

res A dataframe with a ’timename’ column and an ’outcomename’ column (which
is the column that will be smoothed).

t0 last pre-policy timepoint

outcomename String name of the outcome variable in dat. Defaut is "Y".

timename Name of the time column. Default is "time".

post.only If TRUE fit model and smooth post-policy only. WHY fit model on post-policy
data only? Because this will make sure the fixed pre-policy does not dominate
too much? We are focusing on post-policy so we want a good fitting model for
that so we can get our residuals as "white noise" as possible before smoothing.

smooth_k A rough proxy for the number of observations to primarily consider to kernal
weight in the neighborhood of each timepoint (this is a bandwidth, and the loess
smoother gets smooth_k / n as a span value). We want to smooth with an abso-
lute bandwidth, not one as function of how long the time series is.

fit_model A function that takes data, fits a linear model, and returns the fit model. This
function needs an option to include (or not) lagged covariates.

covariates A dataframe with all covariates needed in the model fitting defined by fit_model.

full_output If TRUE give back pieces for diagnostics of smoothing process.

Details

Use loess smoother on complete series of residuals including original data pre-policy and synthetic
data post policy (i.e., smooth the entire plausible series).

Value

A numeric vector of the smoothed residuals. If full_output=TRUE return a dataframe with several
other columns: ‘resid‘, the residuals based on Ystar and the model, ‘residStar‘ the smoothed residu-
als, ’Ybar.sm’ the structural predictions of the model used for smoothing. Here the smoothed values
will be ’Ysmooth’.

See Also

See smooth_series for a more vanilla version that smooths without the model fitting step.

22 smooth_series

Examples

data("newjersey")
smooth = smooth_series(newjersey, outcomename = "n.warrant", t0= -8,

smooth_k = 30,
post.only = FALSE)

plot(newjersey$month, newjersey$n.warrant)
lines(newjersey$month, smooth, col="red")

mod = make_fit_season_model(~ temperature)
newjersey = add_lagged_covariates(newjersey, outcomename = "n.warrant",

covariates = c("temperature"))

smooth = smooth_residuals(newjersey, outcomename = "n.warrant", t0=-8,
smooth_k = 30,
post.only = FALSE,
fit_model = mod)

plot(newjersey$month, newjersey$n.warrant)
lines(newjersey$month, smooth, col="red")

smooth_series Smooth a series using a static loess smoother

Description

Use loess smoother on complete series of residuals including original data pre-policy and synthetic
data post policy (i.e., smooth the entire plausible series).

Usage

smooth_series(
res,
outcomename = "Y",
timename = "time",
t0 = 0,
smooth_k = SMOOTH_K,
post.only = TRUE,
...

)

Arguments

res A dataframe with a ’timename’ column and an ’outcomename’ column (which
is the column that will be smoothed).

outcomename String name of the outcome variable in dat. Defaut is "Y".

timename Name of the time column. Default is "time".

t0 last pre-policy timepoint

smooth_series 23

smooth_k A rough proxy for the number of observations to primarily consider to kernal
weight in the neighborhood of each timepoint (this is a bandwidth, and the loess
smoother gets smooth_k / n as a span value). We want to smooth with an abso-
lute bandwidth, not one as function of how long the time series is.

post.only If TRUE fit model and smooth post-policy only. WHY fit model on post-policy
data only? Because this will make sure the fixed pre-policy does not dominate
too much? We are focusing on post-policy so we want a good fitting model for
that so we can get our residuals as "white noise" as possible before smoothing.

... Extra arguments (not used in this function).

Details

This method takes several parameters it does not use, to maintain compatability with smooth_residuals.

Value

An updated version of the ’res’ dataframe with ‘Ysmooth‘, the smoothed predictions of the original
Ystar outcome. Also includes ’Ystar’ the original sequence to be smoothed.

Examples

data("newjersey")
smooth = smooth_series(newjersey, outcomename = "n.warrant", t0= -8,

smooth_k = 30,
post.only = FALSE)

plot(newjersey$month, newjersey$n.warrant)
lines(newjersey$month, smooth, col="red")

mod = make_fit_season_model(~ temperature)
newjersey = add_lagged_covariates(newjersey, outcomename = "n.warrant",

covariates = c("temperature"))

smooth = smooth_residuals(newjersey, outcomename = "n.warrant", t0=-8,
smooth_k = 30,
post.only = FALSE,
fit_model = mod)

plot(newjersey$month, newjersey$n.warrant)
lines(newjersey$month, smooth, col="red")

Index

∗ datasets
meck_subgroup, 17
mecklenberg, 16
newjersey, 17

add_lagged_covariates, 2
adjust_data, 3
aggregate_data, 4
aggregate_simulation_results, 5, 7

calculate_average_outcome, 6
calculate_group_weights, 7

extrapolate_model, 8, 19

fit_model_default, 9

generate_fake_data, 10
generate_fake_grouped_data, 11

make_envelope_graph, 12
make_fit_season_model, 13
make_many_predictions, 14
make_many_predictions_plug

(make_many_predictions), 14
make_model_smoother, 15
meck_subgroup, 17
mecklenberg, 16

newjersey, 17

process_outcome_model, 9, 18

simITS, 20
simITS-package (simITS), 20
smooth_residuals, 20
smooth_series, 21, 22

24

	add_lagged_covariates
	adjust_data
	aggregate_data
	aggregate_simulation_results
	calculate_average_outcome
	calculate_group_weights
	extrapolate_model
	fit_model_default
	generate_fake_data
	generate_fake_grouped_data
	make_envelope_graph
	make_fit_season_model
	make_many_predictions
	make_model_smoother
	mecklenberg
	meck_subgroup
	newjersey
	process_outcome_model
	simITS
	smooth_residuals
	smooth_series
	Index

